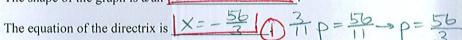
Consider the graph of the polar equation $r = \frac{56}{11 - 3\cos\theta}$. $= \frac{11}{1 - 3\cos\theta}$

SCORE: / 10 PTS

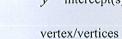
[a]

Fill in the blanks.



[iii]

The eccentricity is 3


The shape of the graph is a/an LELLIPSE [ii]

[iv]

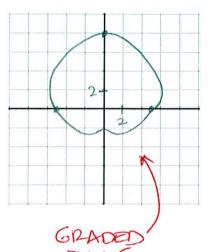
Find the rectangular coordinates of the

x - intercept(s)

y - intercept(s)

GRADED

center


endpoints of the latus rectum/latera recta

focus/foci

[b] Sketch the graph on the grid provided above. You must provide a scale for the axes & plot all points from part [a][iv] above.

Consider the graph of the polar equation $r = 5 + 3\sin\theta$. $|2| \frac{5}{2} |2|$

SCORE: ____/6 PTS

[b]

- [a] Fill in the blanks.
 - [i]
- The shape of the graph is a/an LIMACON WITH DIMPLE
 - The graph DOES NOT pass through the pole. [ii] (does / does not)
 - Find the rectangular coordinates of the
 - [iii]
 - x intercept(s)

 - y intercept(s)

Sketch the graph on the grid provided above. You must provide a scale for the axes & plot all points from part [a][iii] above.

[a] Using the tests and shortcuts shown in lecture, determine if the graph is symmetric over the polar axis, $\theta = \frac{\pi}{2}$ and/or the pole.

Summarize your conclusions in the table on the right. NOTE: Run as FEW tests as needed to prove your conclusions are correct.

Summarize your conclusions in the table on the right. NOTE: Run as FEW test
(r,-0): r=4-6(05260)
r= 4-6cos(-20)
1 r= 4- 6 cos 20, SYM OVER POLAR AXIS
(r, T-6): r= 4-6 ws 2(T-0)
r=4-6 cos(211-20)

Conclusion
ISYM
SYM
SYM

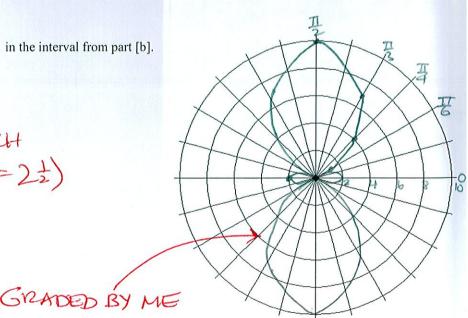
r=4-6[cos271cos20+511120]

DIF YOU GOT 2 RIGHT

 $\begin{array}{c} (\Gamma, \pi + \Theta) \cdot \Gamma = 4 - 6\cos 2\theta \cdot \text{SYM OVER} \ \Theta = \frac{\pi}{2} \\ (\Gamma, \pi + \Theta) \cdot \Gamma = 4 - 6\cos 2(\pi + \Theta) \cdot (1) \\ \text{MSO OK IF} \qquad \Gamma = 4 - 6\cos (2\pi + 2\Theta) \\ \text{ONE OF THESE} \qquad \Gamma = 4 - 6\left[\cos 2\pi \cos 2\Theta - \sin 2\pi \sin 2\Theta\right] \end{array}$

DIFYOUGOT ALL 3 RIGHT

3 TESTS
REPLACED WITH DY - 4-6 COS 20 SYM OVER POLE


6) IF YOU GOT OMY DIGHT

"AUTOMATICALLY SYMMETRIC"

Based on the results of part [a], what is the minimum interval of the graph you need to plot (before using reflections to draw the rest of the graph)?

[0, 표], (1) Find the value of r for all common values of θ in the interval from part [b]. [c]

$\underline{\theta}$	<u>r</u> _	7
\bigcirc	-2	
76		(TOTAL=21)
77.	4	(TOTAL=25)
7	7	
7	10	

[d] Sketch the graph on the grid provided below. You must provide a scale for the polar axis & plot all points from part [c] above. NOTE: r = 0 for some θ between 0 and $\pi/2$, but not in your list of angles in [c]. You do NOT need to find that θ .